skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Acharjee, Niloy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Holographic displays and computer-generated holography offer a unique opportunity in improving optical resolutions and depth characteristics of near-eye displays. The thermally-modulated Nanopho-tonic Phased Array (NPA), a new type of holographic display, affords several advantages, including integrated light source and higher refresh rates, over other holographic display technologies. However, the thermal phase modulation of the NPA makes it susceptible to the thermal proximity effect where heating one pixel affects the temperature of nearby pixels. Proximity effect correction (PEC) methods have been proposed for 2D Fourier holograms in the far field but not for Fresnel holograms at user-specified depths. Here we extend an existing PEC method for the NPA to Fresnel holograms with phase-only hologram optimization and validate it through computational simulations. Our method is not only effective in correcting the proximity effect for the Fresnel holograms of 2D images at desired depths but can also leverage the fast refresh rate of the NPA to display 3D scenes with time-division multiplexing. 
    more » « less
  2. null (Ed.)
  3. Abstract Chalcogenide phase change materials (PCMs) have become one of the most promising material platforms for the Optics and Photonics community. The unparalleled combination of nonvolatility and large optical property modulation promises devices with low‐energy consumption and ultra‐compact form factors. At the core of all these applications lies the difficult task of precisely controlling the glassy amorphous and crystalline domains that compose the PCM microstructure and dictate the optical response. A spatially controllable glassy‐crystalline domain distribution is desired for intermediate optical response (vs. binary response between fully amorphous and crystalline states), and temporally resolved domains are sought after for repeatable reconfiguration. In this perspective, we briefly review the fundamentals of PCM phase transition in various reconfiguring approaches for optical devices. We discuss each method's underpinning mechanisms, design, advantages, and downsides. Finally, we lay out current challenges and future directions in this field. 
    more » « less